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ABSTRACT

Fetal Standard Plane (SP) acquisition is a key step in ultra-
sound based assessment of fetal health. The task detects an
ultrasound (US) image with predefined anatomy. However, it
requires skill to acquire a good SP in practice, and trainees
and occasional users of ultrasound devices can find this chal-
lenging. In this work, we consider the task of automatically
predicting the fetal head SP from the video approaching the
SP. We adopt a domain transfer learning approach that maps
the encoded spatial and temporal features of video in the
source domain to the spatial representations of the desired SP
image in the target domain, together with adversarial training
to preserve the quality of the resulting image. Experimental
results show that the predicted head plane is plausible and
consistent with the anatomical features expected in a real SP.
The proposed approach is motivated to support non-experts
to find and analyse a trans-ventricular (TV) plane but could
also be generalized to other planes, trimesters, and ultrasound
imaging tasks for which standard planes are defined.

Index Terms— Fetal ultrasound, Adversarial learning,
Domain adaption, Image synthesis

1. INTRODUCTION

Standard plane (SP) acquisition is a routine clinical examina-
tion task during obstetric ultrasound (US) scanning. In this
study, we consider the trans-ventricular (TV) plane which is
the plane used for head circumference (HC) biometry and to
assess fetal brain development. The TV standard plane is
obtained by live B-mode scanning stopped at a cine-buffer
frame with particular anatomical structures that are clearly
presented. However, the quality of the retrieved US image
is highly dependent on the experience of the sonographer.
An inadequate visualisation of any key anatomical structures
of the desired plane will typically require a second image
capture that causes burden for both the pregnant mother and
sonographer, and failure to detect any abnormal structures
may lead to misdiagnosis.

To support medical education of trainee sonographers,
previous related work has mainly focused on simulating ran-

dom anatomical views of US from scratch. One branch of
work in this field [1, 2] target at searching numerical solu-
tions of the biological tissues in wave space or using physic
ray-tracing approaches, which are computationally expensive
to use. Another branch has proposed deep learning-based
frameworks to simulate ultrasound images from phantoms
[3] or to enhance synthetic images [4]. Whilst promising
results have been achieved, such models are suitable for
training simulation but challenging to deploy in real-world
clinical scanning with large anatomical variations. With this
observation, [5] proposed to generate anatomy based on hu-
man annotations of clinical US and control over variability
of the generated fetal head. Liang et al. [6] simulated US
images from manually-labeled segmentation maps. There are
also a few attempts to predict or synthesize medical images
from videos of other modalities. For example, [7] used a
spatio-temporal prediction network to outline the lesion area
in 4D CT brain perfusion imaging. However, that method
is not directly applicable to US prediction due to the large
potential changes in the anatomical planes.

In this paper, we propose a Domain-Adaptive SP Gener-
ator (DASPG) that learns to predict the SP image with the
underlying anatomical structures inferred from the spatial and
temporal features of the video searching for the SP (defined
as SP search video). The challenges faced in designing a
solution for this task are: 1) compared to a SP image, SP
search video usually contains noticeable artefacts such as
motion blur and distortion; 2) many frames in the video are
not related to the final SP. To address these obstacles, the
key step of DASPG is to translate the raw video features to a
clean, standard biometric plane with a domain adaption (DA)
module. Domain adaption has been broadly exploited to
transform representations across different modalities, such as
image-to-video of daily activities [8] and magnetic resonance
(MR) imaging to computed tomography (CT) in medical re-
sources [9]. Here, we pose the problem of predicting the SP
image from video as a transfer learning task. Specifically, we
regard the video during scanning as the source domain and its
resulting SP image as the target domain, and apply domain
adaption to align between these two imaging representation
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domains. To avoid an averaged solution, we separately model
the spatial and temporal features of the video input with a U-
Net [10] and a temporal convolutional network (TCN) [11],
respectively, that keeps the spatial properties of the US image
appearance while propagating the temporal dynamics. Fur-
thermore, we add a Generative Adversarial Network (GAN)
to our model to create realistic ultrasound textures in the
predicted image.

The paper contributions are three-fold: 1) We propose the
first model to predict an ultrasound SP from a search video
starting at a random position. 2) We show that domain adap-
tion can effectively convert a raw search video to the SP im-
age with clear anatomy. 3) The feasibility of our approach
is demonstrated on real-world fetal brain ultrasound of both
Anomaly and Growth scans. The predicted plane is realistic
with required anatomical structures that can be used as a tar-
get image to guide the SP detection.

2. METHODOLOGY

The proposed DASPG model predicts the corresponding stan-
dard anatomical plane image when given a search video of
TV. Different from identifying an observed SP [12, 13], our
aim is to generate a standard view to assist inexperienced
sonographers. The overall architecture is given in Fig. 1.
Let X = {xt}tnt=ti denotes the input US video sequence (the
search video), and y its SP image frame at time T . The pro-
posed generator G learns a mapping X → y that consists of
a stepwise spatial encoder ES and a temporal extractor ET

to separately model the spatial and temporal feature of the
search video, a domain adaption module DA to transfer the
observed scanning knowledge to the targeted SP representa-
tion, and a spatial decoder DS to synthesize the SP image.

2.1. Domain-Adaptive Standard Plane Generator

Since most of the interpretable structures are within the fe-
tal skull, the US image is initially transformed by a pre-
trained Spatial-Temporal Network (STN) [14] to discard the
surrounding structures before feature encoding. This pre-
processing step ensures the area of interest in fetal head
structure is located in the center of the image.

The obtained US sequence X is convoluted separately in
the space and time dimensions, which is more efficient in pre-
serving image properties than a joint 3D convolution [15].
Specifically, we leverage the contracting path of U-Net to
form the 2D spatial encoder ES . The output ES(X) aggre-
gated for input length |tn − ti| is then fed into a TCN ET to
capture the dynamics of the anatomical context from adjacent
time slices. ET consists of four residual convolution blocks
operated along the time channel. Within each block, there
are two layers of dilated causal convolution, weight normal-
ization, and nonlinear activation (ReLU) followed by a resid-

Table 1. The output feature shape of each module component
in DASPG. B denotes the mini-batch size.

Module Output Size
ES B × |tn − ti| × 256× 14× 14
ET B × 256× 14× 14
DA B × 256× 14× 14
DS B × 224× 224

ual connection at the input and output feature representations.
Compared to a recurrent convolutional network (RCN), TCN
reduces the computational complexity in sequential modeling
with lower memory cost, which is an important design con-
sideration for prediction in real-world clinical scanning.

Domain adaption By definition, an SP contains de-
fined structures with anatomical meanings which may not
exist or be clearly visible in other frames of a search video
that are “off plane”. To investigate the implicit correlation
between the search video and the searched SP, we exploit
transfer learning to adapt the knowledge between them. We
first define the US video-based high-level representation
ET (ES(X)) is from the source domain, and the image-based
representation ES(y) embedded from the shared spatial en-
coder ES is from the target domain. As shown in Fig. 1, the
domain adaption (DA) module has a residual block [16] with
two fully-connected (FC) layers on the flattened feature map
to extract the domain expertise from video representation.

The output representation of DA is fed into a spatial de-
coder DS to translate the SP image. DS is formed by the
expansive path (decoder) of U-Net without skip connections.
Table 1 demonstrates the detailed feature sizes of the above-
mentioned modules in generating a 224× 224 SP image.

2.2. Objective Function and Adversarial Training

The DA module is optimized through a domain transfer loss
LDA to maximize the cosine similarity between the flattened
high-level representations of the US video DA(ET (ES(X)))
and image ES(y):

LDA = 1− < DA(ET (ES(X))), ES(y) > (1)

To constrain the spatial encoder-decoder (i.e., ES and
DS), we reconstruct the search video X and SP image y with
L1 loss, respectively:

Lrec =
1

|tn − ti|

tn∑
t=ti

||DS(ES(xt))− xt||

+ ||DS(ES(y))− y|| (2)

The autoencoder structure for reconstruction is shared be-
tween video frames and the SP image to recognize the
ultrasound-specific spatial semantics. We also regularize
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Fig. 1. The architecture of DASPG training and inference. The inference process is shaded in gray. X ′ and y′ represent the
reconstructions from the input video and SP image, respectively.

the predicted image G(X) with the intensity loss LSP =
||G(X)− y|| supervised by the content of the real image y.

As an auxiliary loss, adversarial learning is also employed
in the proposed DASPG to increase the realism of the synthe-
sized SP image. We use MobileNetV2 [17] with lightweight
depthwise-separable convolutions as the discriminator D to
classify between a real SP image y and the predicted SP im-
age G(X), and the adversarial loss Ladv is given by:

Ladv = EX log (1−D(G(X))) + Ey logD(y) (3)

The overall objective combines all four losses L = LDA+
LSP + Ladv + Lrec with equal weights.

3. EXPERIMENTS

3.1. Dataset and Implementation Details

The experimental dataset contains 103 routine obstetric
videos of the fetal head from the Anomaly scan (within
the second trimester) and the Growth scan (within the third
trimester). An US video clip is selected within 10s before the
cine-buffer-corrected SP and downsampled to 6Hz. The train-
ing/test scan split is 74/29. The training scans are augmented
by 1) random flipping horizontally or vertically, and 2) ran-
domly selecting 12 consecutive frames (i.e., |tn − ti| = 12)
as training input. Each test scan is split into four non-overlap
clips of 12 frames in length to form the test clips for evalua-
tion. For model implementation, the kernel size of ET is set
to 2, and the output channels of its 4 layers are 8, 6, 3, and
1. In DA, there are 1,024 hidden units and a ReLU activation
between the two FC layers. The whole network is trained for
300 epochs with an AdamW optimizer. The initial learning
rate is 1e-3 decayed by 1e-2 every 100 epochs.

Table 2. Quantitative results of different temporal architec-
tures and losses in terms of KLD (↓) and FSD (↓).

Architecture Loss KLD FSDR3D 2D+RCN 2D+TCN LDA LSP Ladv Lrec

✓ ✓ ✓ 1.217±0.070 182.24
✓ ✓ ✓ ✓ 0.513±0.086 97.46
✓ ✓ ✓ ✓ 0.265±0.100 83.41

✓ ✓ ✓ ✓ ✓ 0.368±0.228 93.44
✓ ✓ ✓ ✓ ✓ 0.476±0.107 129.96

✓ ✓ ✓ ✓ ✓ 0.251±0.101 80.41

3.2. Quantitative Evaluation

Numerically we compare the quality of a generated image
with a real SP using Kullback-Leibler Divergence (KLD)
and Fréchet SonoNet Distance (FSD) [5]. KLD characterizes
tissue-specific speckle differences based on the histogram
statistics of two US images, and FSD tests the overall quality
of US image appearance. Different from Fréchet Inception
Distance (FID) [18] designed for natural images, FSD is more
effective in measuring the ultrasound-specific image quality
by using SonoNet-64 [19] as the image feature extractor [5].

We first evaluate each component of DASPG in Table 2.
The baseline model given in the first row is when only con-
sidering the GAN-based generator [20] along with the recon-
struction loss to constrain the autoencoder. When comparing
the KLD in the first and second rows, we observe that reg-
ularization of image intensity substantially benefits the gen-
erator. Furthermore, by adapting the predicted distribution
to the target SP, the involvement of the DA module consis-
tently increases the performance (see the results in the bot-
tom row). The reduction in FSD also indicates that DA nar-
rows the image quality gap between the SP searching and cap-
ture stages. In terms of architecture, integrally modeling the
spatio-temporal characteristics in US video using 3D residual
convolutions (R3D) [21] is less stable with a large standard
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Fig. 2. Qualitative performance of the predicted standard
plane images. Here, (a) baseline with only Ladv and Lrec (b)
the proposed generator without DA module (c) the proposed
generator with DA module. Note that A1-3 are three exam-
ples of Anomaly scans, and G1 is an example of a Growth
scan.

deviation, where spatial features might mix up with temporal
features in the SP regression. When comparing the bottom
two rows, the dilated convolution in TCN is superior to RCN
in modeling the temporal patterns in ultrasound SP searching.

3.3. Qualitative Evaluation

Example SP predictions for different models and scans are
presented in Fig. 2. The visual appearance of the main
anatomical structures, such as the skull, the choroid plexus
(CP), midline, and cavum septum pellucidum (CSP) are rec-
ognized in predicted TV planes with the individual visibility
varying between examples, as shown in Fig. 2(c). Comparing
Fig. 2(a) and (b) shows that the intensity loss improves the
baseline by preserving the grayscale map and speckle tex-
ture of an US image. However, compared to Fig. 2(c), the
predicted plane without DA in Fig. 2(b) is blurred and closer
in appearance to the last plane in the input scanned video
(the rightmost column in Fig. 2). A shift to the target plane
using DA (in Fig. 2(c)) helps create a realistic SP with clearer
boundaries of the anatomical structures.

In terms of data diversity, while image appearance in the
search video is far from the SP (shown in the challenging case
of A3), the prediction still correctly estimates the outline of
head and the direction of internal anatomical structures. Fur-
ther, the prediction of G1 shows that the model can generate
a realistic result for the third-trimester scan which has higher
variability in fetal head appearance. This shows the model
has generalizability toward different phases of obstetric scan.

To test how the choice of input video affects prediction

Fig. 3. The predictions at different observation levels.

quality, in Fig. 3, we compare predicted planes generated by
input video clips at different temporal distances from the real
SP. Predictably, the quality of the generated plane increases
when the input clip is closer to the real SP. The anatomi-
cal structures predicted from the scan approaching SP are
more clear and more recognizable since the video dynamic
becomes stable with the visual content more similar to the
standard view.

4. CONCLUSION

We have proposed a fetal US SP image predictor (DASPG)
with anatomical structures inferred from the input SP search
video. Apart from a video-based encoder and an image-
based decoder, the main architecture of DASPG is a domain
adaption module that translates the encoded features of an
SP search video to the SP image representation in target do-
main. The predicted SP image on TV scan is shown to be
anatomically consistent with a real SP image, which can be
used as the target image with the expected structures to guide
the clinical SP acquisition. As future work, we will apply
DASPG on more standard views with clinical evaluations
such as anatomical landmark detection and usability study.
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